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INTRODUCTION
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Figure 2. Segmented typhoon image is compared with the pathology (H&E). (A) is the

segmented typhoon image, (B) is original H&E next to the slice (A), (C) gray image of H&E,

and (D) registered together typhoon(A) and H&E(C) image.

EXPERIMENTAL RESULTS

METHODOLOGY
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Figure 1. This image shows components of the Class activation

map from a classifier, activation map (A), and weighted feature

map (F).
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Figure 2. The full MSFM architecture of the multi-stage network that consists of three stages starting with CNN in the

training phase and dotted black box is the structure in the test phase. The class feature map (CFM) represents the

product of Fully Connected (FC) weights and FM. “Yes” represent the condition to the output for a specific class

(fractured image in our case), and ‘+’ in the output image is to paste the combined part in the original image. The CNN

and FC layers of the same color represent parameter sharing.

Multi-stage feature map learning (MSFM) network architecture

Figure 3: Visual representation of the main model's core operational objectives.

A. This network trains to localize the key area in a weakly supervised manner. The informative area is represented

by the bounded box.

B. This pipeline is based on the second stage of MSFM. Here red, orange, yellow, and green colors indicate the

order of the proposed window, and the white window indicates the final window by combining all the windows

using discounted factor method in the same order.

C. This figure represents the feature map-based augmentation. CNN of different colors represents the different pre-

train CNN for removing the high-intensity values based on the drop mask that produces FMA with the product of

the original image.

Table 1. Comparison based on classification results to baseline models. The highest accuracy of each part is

highlighted. MSFM-R-n is our proposed method with the backbone of R=Resnet for n= [18, 34, 50].

Table 2. Results based on Cohen’s kappa statistic score and comparison to the baseline technique and three

unbiased radiologists. RD1, RD2, and RD3 represent three radiologists. The highest Cohen’s kappa score in all

RDs/models and the models marked as bold. Av. is the average kappa score of all parts.
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Figure 4. Output from MSFM at each step of the model. The

first column consists of an original image from each part

followed by the columns of FMA, Look Closer in the original

image, and abnormality detection in the original image.

Figure 5. Visual comparison with weakly supervised CAM.

Table 3. Localization performance of the first stage of 

MSFM on CUB.

Figure 6. Comparison of MSFM on backbone models 

using JPE.

Figure 7. Effect of loss function on Cohen’s kappa 

statistic.

Figure 8. Tumor detection output visualization.

SUMMARY AND CONCLUSIONS

➢ The proposed Multistage Feature Map (MSFM) learning network offers a robust solution for bone fracture

classification and localization in X-ray images, surpassing the limitations of existing methods that rely on

annotated bounding boxes.

➢ MSFM builds upon CAM, utilizing feature map-based activation (A) and class feature map (F) to capture

comprehensive object information. By incorporating multiple stages, MSFM enhances robustness to image

variations and extends the applicability of CAM to the entire object.

➢ The paper's contributions encompass the development of the MSFM-net architecture, a novel weakly supervised

fracture localization technique, a feature augmentation method, and an extensive analysis of loss functions.

➢ Through comprehensive experiments, the proposed MSFM model achieves state-of-the-art results on the

standard MURA dataset, which includes the elbow, finger, forearm, humerus, shoulder, wrist, hand, and bone

tumor dataset., enhancing both classification accuracy and detection visualization.

➢ The advancements presented in this paper hold promise for improving the efficiency and accuracy of disease

localization in X-ray images, ultimately benefiting patient care and outcomes in the field of medical image

analysis.
➢ Our future endeavors involve extending the application of the MSFM model to a wide range of medical and natural image

datasets. This expansion will encompass moving beyond pretrained models and exploring more advanced backbone models.

▪ Accurate classification and precise localization of bone fractures in X-ray images

are crucial for medical diagnosis and treatment.

▪ Current state-of-the-art classification methods prioritize accuracy but lack

reliability.

▪ Existing approaches for fracture localization often require costly annotated data.

▪ We proposed Multistage Feature Map (MSFM) learning network.

▪ This approach aims to enhance

both classification accuracy and

localization in weakly-supervised

manner without relying on costly

annotated bounding boxes.

▪ A feature augmentation technique

is introduced to focus the model

on discriminative

regions, refining localization.

▪ Experiments conducted on the MURA dataset, covering diverse X-ray images,

showcase the effectiveness of the MSFM model.

▪ The MSFM model holds potential for advancing the medical image classification

and localization.
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